

Abstract— Higher order networks allow modelling of

correlates and geometrically invariant properties. Current
techniques for their development either require domain
knowledge, or are constrained by scaling properties or local
minima. A novel reformulation of the product unit is
introduced, motivated by a desire to improve scaling and
training properties. The new unit allows developing high
orders of positive and negative powers, and correlates in a
single stage, but can be trained successfully using standard
back propagation techniques. Tests on standard benchmarks
in various hybrid topologies demonstrate the potential in a
variety of problem domains.

I. INTRODUCTION

RTIFICIAL Neural Networks (ANN) are designed to
emulate the storage and learning mechanisms within

biological brains. The standard ANN model is based upon
summation, calculating the net input as the weighted sum
of the inputs. Multi-layer Summation Unit Neural
Networks (SUNN) have been found capable of representing
any continuous function to an arbitrary degree of accuracy,
provided there are sufficient number of hidden units [1-3].
However, biological evidence shows the capability of the
animal nervous system to perform multiplication [4] as
well as addition.

Multiplication in ANN allows for the development of
correlation information and higher order terms providing
increased capacity and the ability to learn geometrically
invariant properties [5]. Appropriate domain knowledge
enables these terms to be pre-calculated and included as
additional inputs to a SUNN. Without this knowledge, all
permutations of inputs and powers must be included,
which results in a combinatorial explosion for large
numbers of inputs. It has been shown that for logical
problems at least, generally only a minority of variables

Manuscript received February 15, 2005. This work was supported in part

by the UK Government's Engineering and Physical Sciences Research
Council (EPSRC), and also by the Thales Group UK.

P. Elliott with Cybernetics, University of Reading, RG6 6AY, UK,
(phone: +44 (0) 118 987 5123; e-mail: p.t.elliott@rdg.ac.uk).

D. Topiwala is with Thales Research & Technology (UK) ltd, RG2 0SB,
(phone: +44 (0) 118 923 8276; e-mail: diven.topiwala@thalesgroup.com).

W. N. Browne with Cybernetics, University of Reading, RG6 6AY, UK,
(phone: +44 (0) 118 378 6705; e-mail: w.n.browne@rdg.ac.uk).

require higher order terms [6]. Therefore, except for low
dimensional problems, or where domain knowledge is
available, it is considered most efficient to develop the
necessary higher orders internally during training [7-12].

An alternative form is the pi-sigma NN [7], which takes
into account the requirement for developing only a
minority of higher order terms. A pi-sigma network
consisting of K summing units feeding a single output
product unit can produce a Kth order approximation of a
continuous function. Some other architectures which
allow development of higher orders and/or correlates
include the functional link NN [13], ridge polynomial NN
[14], and Product Units (PU) [11].

Out of which Product Units are the most efficient for
developing higher orders, however the standard method of
training NN, Gradient Descent (GD), which has proved
successful in training SUNN tends to become stuck in local
optima when training PUNN. The reason for this is the PU
increase the complexity of the state space, introducing
more local minima [8, 10, 15].

The focus of this paper is the development of a re-
formulation of the product unit. The aim is to allow
development of arbitrary orders of power, both positive and
negative, within a single unit, facilitating description of
system poles and zeros. A further aim is to harmonise this
novel Reformulated Product Unit (RPU) for operation with
the Summation Unit (SU) while minimising complexities
introduced into the state space, and hence improve
trainability. The RPU when instantiated in its minimal
form will use the same parameter order, back propagation
and weight update equations as a SU. These equivalences
simplify the implementation of hybrid networks. Units are
easily interchangeable allowing development of arbitrary
topologies. The optimal topology to approximate a given
function is postulated to utilise multiple forms of data
fusion to produce a single output from the many input
variables. Or simply stated, a function can be more
accurately and compactly modelled if the relationships
between the variables can be succinctly emulated, which
requires a variety of neural tools to be available.

Using multiple neural blocks in order to further
minimise the number of parameters in a model is

Training Reformulated Product Units in Hybrid
Neural Networks

Philip T. Elliott, Diven Topiwala, and Will N. Browne

A

0-7803-9490-9/06/$20.00/©2006 IEEE

2006 International Joint Conference on Neural Networks
Sheraton Vancouver Wall Centre Hotel, Vancouver, BC, Canada
July 16-21, 2006

5051

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 4, 2009 at 08:13 from IEEE Xplore. Restrictions apply.

commensurate the principle of Minimum Decription
Length (MDL). Jorma Rissanen introduced the principle of
MDL [16], which embodies Ocam’s Razor. The
fundamental concept is that any regularities within the
data may be used to compress its form facilitating more
compact descriptions, requiring fewer symbols, which
tends to optimise average generalisation performance on
unseen data.

The following sections of this paper will provide
background on previous forms of multiplicative data
fusion. Associated training difficulties are discussed along
with potential means to minimise local minima for the
standard PU. A new form of product unit is then
introduced to address important issues and tested on
benchmark problem data sets.

II. MULTIPLICATIVE DATA FUSION IN NEURAL NETWORKS

The standard Summation Unit (SU) fuses multiple input
signals to form a single net input signal using a weighted
sum of the inputs plus a bias, (1), where oj is the output of
unit j, and wij, is an adjustable parameter between node i
from a preceding layer and node j, and xi represents the
output value of node i. The final output of the node is then
the net input passed through an activation function (2).
Typically a sigmoid, such as the tan-sigmoid (3), is used
but cosine, gaussian or any other smooth differentiable
function may be used with back propagation. There are two
primary functions performed by the sigmoid: firstly, to act
as a squashing function to ensure that signals stay within
controllable limits, since large-scale differences in signals
tend to be detrimental to learning [12, 17]. Secondly, the
activation function acts as an optional source of non-
linearity that may be used where the linear net input is
incapable of modelling the required functional
relationships. The standard sigmoid activation function is
linear around the unit’s centre but increasingly non-linear
towards the extremes.

 () 0
1

() .
m

j ij i
i

SU net w x w
=

= +∑ (1)

()j j jo netσ= (2)

() ()
2

-1
1 exp -

j j

j

net
net

σ =
+

 (3)

Driven by biological evidence of multiplicative
processing in the nervous system, and by a pure
engineering and mathematical desire to diversify the range
of functions that can be represented and learned by Neural
Networks, multiplicative data fusion has been utilised in
NN in a variety of different forms. The most established
form of multiplicative synapse is Higher Order Neuron

(HON). The equation that defines a HON with output o,
and inputs xa, xb, xc … is defined in (4)

0

, ()

, , ()

(HON)
a a ab a b

a a b a b

abc a b c
a b c a b c

w w x w x x

o
w x x x

σ ≤

≤ ≤

 + +
 

=  + 
 

∑ ∑

∑
 (4)

 The higher-order correlations contained allow the
learning of geometrically invariant properties, and also
allows the pre-calculation of the higher-order correlations
as additional inputs so that a SUNN can be trained in the
normal way for fast learning of low dimensional problems.
However, due to the exponential scaling property of this
formulation, it is limited to low orders of power and low
dimensional problems.

 Sigma-Pi architectures, so named due to their form
that computes the sum of products, alleviate this scaling
problem somewhat, however development of high orders is
still very computationally expensive. The sigma unit uses
the standard weighted sum as in (1), to compute the net
input, which is then passed through an activation function
σ , (2). The pi unit (PIU) calculates the net input as the
product of weighted inputs (5).

 ()
1

() .
m

j ij i
i

PIU net w x
=

= ∏ (5)

 The PIU as defined in (5), [18, 19], is not a scaleable
or controllable form with which to develop higher orders
or correlates. The model can be factorised retaining
identical in functionality to give (6), where a single
common factor wj represents the combined effect of the wij.
Therefore, inputs cannot be individually controlled to
increase or discount their effects.

()
1

() .
m

j j i
i

PIU net w x
=

= ∏ (6)

 Pi-sigma architectures [7] compute the product of sums
rather than sum of products. The parameter order is
reduced for this architecture by removing the adaptable
weights connecting the sigma unit’s outputs to the pi units.
Pi-sigma networks reduce the scaling problems with the
number of inputs present in sigma-pi networks. However
to generate a cubic term, three summation units are
required to act solely as through paths from the inputs to
the outputs, with all other SU links being redundant. Pi-
sigma networks are considered to be efficient for non-
linear pattern classification and function approximation.

 All of the above forms are limited in the maximum
order that they can generate for a single variable. The
majority, with exception of pi-sigma networks can only
develop first order powers or correlates in a single layer,
and the maximum order of pi-sigma is limited by the
available number of sigma units, with increasing

5052

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 4, 2009 at 08:13 from IEEE Xplore. Restrictions apply.

parameter redundancy in the sigma units for development
of higher orders.

Another form of multiplicative based data fusion, the
Product Unit (PU) uses a power function to control the
strength of propagation for each link rather than a linear
scaling weight. The advantage of this formulation (7) is
that it allows the development of arbitrary order of power
for any input within a single unit. Correlates between the
inputs raised to their separate powers can also be produced.
Product Unit Neural Networks (PUNN) where developed
by Durbin and Rumelhart [11], and have been further
investigated by others including [8, 9, 15].

()
1

() ij

m
w

j i
i

PU net x
=

= ∏ (7)

 An additional advantage of product units is their
increased information capacity of 3N relative to the SU
capacity of 2N for N inputs, for binary logic problems at
least [11] .It is worth noting that for Boolean inputs the PU
has been shown to be approximated by a SU with a cosine
activation function (8).

()

()
1

{ 1,1} are remapped onto {1,0}

 () cos .

i

m

j ij i
i

iff x

PU net w xπ
=

⊂ −

= ∑
 (8)

 This equivalence simplifies the implementation of the
PU for binary inputs. Stemming from this form,
approximating the PU as a SU with a cosine activation
function, is the suggestion that the Vapnik-Chervonenkis
(VC) dimension is practically infinite, for binary inputs at
least [15, 20]. The VC dimension directly relates partly to
the versatility but also to the generalisation properties. A
large VC dimension implies that generalisation may not be
guaranteed; although it is not clear to what extent this
comparison extends to a real non-binary implementation.

PU are powerful in their representative abilities, but also
tend to be more difficult to train than SU. The reason for
this is that the PU introduces increased amounts of local
minima into the state space along with deep ravines and
valleys that tend to trap the solution [8-10, 15]. An
important cause of local minima introduction is due to the
power function being used to control the strength with
which signals are propagated. In (7) if the base argument
xi of the power is zero then the contribution for the input
must be either zero or infinity for negative and non-
negative powers respectively, not the desired unit identity.
More simply stated, even with a controlling power of zero
an input cannot be ignored if xi touches or crosses zero. An
integral aspect of scaleable learning is the ability to
completely discount any inputs unrelated to the target
output. Use of either standard form of input (xi)
representation, uni-polar [0..1] or bi-polar [-1..1] will

result in the introduction of artefacts.
The use of bi-polar inputs with the standard PU equation

(7) will result in further local minima due to the inclusion
of sign affects within the controlling power operator. The
power function preserves input sign information for
negative powers, but for positive powers sign information
is removed. This can make a purely local search for global
solutions almost impossible; consider modelling z3 as in
[8]. Training from small random initial conditions, as is
normal with SUNN, will increase the controlling weight
towards unit power. However, due to the incorporation of
sign in the power, training will not surmount the large
error introduced where the sign information is lost at the
power of two in order to reach the cubed power where sign
information is restored. The same problem would arise in
attempting to learn the problem with power initial
condition greater than four. An alternative suggestion to
reduce local minima is to use a signed power, where sign
information is maintained regardless of the controlling
power.

In summary, the requirements for an adaptable learning
element to generate higher order correlates are scalability,
trainability and inclusion of the combining operator’s
identity for each input. Scaling to accommodate large
numbers of inputs requires the ability to ignore or only
partially consider signals, many of which may be unrelated
to the output. This feature is notably lacking from (5). The
PU (7) allows partially discounting inputs, but with the
production of artefacts being detrimental to trainability and
accuracy in representing continuous functions. Trainability
is increasingly important with network size to make
problems analytically tractable. Evolutionary algorithms
tend to produce reasonable solutions quickly, but often take
much longer to tune; making gradient descent a desirable
feature for a practical solution. If zeros and zero crossing
are to be utilised it is imperative that the location of the
zero point on the input space is adaptable to allow
discounting signals.

III. REFORMULATED PRODUCT UNIT (RPU)

What is desired is a means of adaptively learning to
develop the required higher order terms to model a given
function for minimal cost. Since only a few higher order
terms are generally required to solve a problem it is
desirable to allow generation of arbitrary powers in a
single stage to minimise the parameter cost. The product
unit introduced by Durbin and Rumelhart, [11], allows
this. However, in order to minimise the introduction of
minima into the state space by the inclusion of higher
order variables, and improve trainability, the product unit
will be reformulated. A second priority in this

5053

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 4, 2009 at 08:13 from IEEE Xplore. Restrictions apply.

reformulation is to harmonise the product unit with the
standard summation unit to allow back propagating hybrid
networks. Another factor to consider is that if multiple
different types of neurons are to operate simultaneously in
a network, then there is an additional performance cost in
determining and utilising the corresponding specialised
error and weight update formulae. Ideally the same
equations would be effective for each node type.

The standard SU conventions assumed here are:
netj is the net input for node j which has a total of n

units in its layer. Unit i is in the preceding layer to unit j
and has a total of m units in its layer. The input for unit i is
denoted by xi and has range [-1 …1], wij represents an
adjustable signal propagation strength parameter between
unit i and unit j. The error for unit j is ej, where for output
nodes equation (9) is used and for hidden nodes, where
target information is not present, the errors are back
propagated according to the strengths of the connecting
link parameters wij using (10). The equation controlling
weight adaptation is given by (11), where the learning rate
is a network parameter controlling step size.

() ()' .j j j j je net t oσ= − (9)

 ()
1

.
' .

n
ij j

i i i
j

w e
e net

n
σ

=

  
=   

  
∑ (10)

. .ij i jw x e η∆ = (11)

 To allow the use of the standard SU back propagation
equations it is essential to align the identities and
orientation of all of the operators. The binary combining
function used is a product so requires unity identity for
discounting of signals. The base argument in the power
function also has unity identity and the exponent argument
acts as the controllable strength of signal propagation. The
standard power function is undefined for negative inputs so
the base of the power must remain positive, otherwise a
complex power or signed power must be used. Where a
signed power would have the advantage of reduced
numbers of local minima.

()() 0
1

() 1 () 1ij
m

w

j j i
i

RPU net c x wβ
=

= + − +∏ (12)

The summation-based identity at zero on the input space
can then be mapped to unity identity for the base argument
in the power function as in (12). The simplest form of (12)
would be to use a global constant scaling parameter c,
where (c<1) to ensure that the base of the power remains
positive with β(xi) as the raw input (13). This helps avoid
exceptions by “softening” the zero effect, preserving
accountability by avoiding saturation, and also allows
smooth discounting of signals which is important for
scalability with large numbers of inputs,

()i i ix xβ = (13)

This format maintains the integrity of all the standard
SU formulae with only the net input equation specialised.
Finally, after the links input factors have been multiplied
together, to reconcile the differences in the operators’
identities and convert back to standard summation based
form, a unit bias is removed. For minimal extra cost the
scaling parameter c can be individual to each node, to
allow increased flexibility.

A descriptive aspect that has been removed from the
original PU during its reformation is the ability to develop
‘V’ or ‘U’ shapes from bi-polar inputs; bi-polar inputs
with even power will form a ‘U’ shape centred at zero. An
extension of the RPU form is to allow development of such
local features in a manner similar to radial basis functions,
[20]. Equation (12), used with (14), allows description of
local features internal to the input space, for example the
absolute distances from a feature centre. The minimum
additional cost to describe such features within this
formulation is a single additional parameter per node to
describe a single common feature centre in input space
(14). However, where multiple internal features are
anticipated significantly increased expressive capabilities
can be achieved through using a feature centre parameter
per link (15).

() () ()()i i i j jx abs x b abs bβ = − − (14)

TABLE I
DISPARITY IN SIGNAL SHAPES AND RANGES BETWEEN POSITIVE AND NEGATIVE CONTROLLING POWERS

Unit Positive Power Unit Negative Power Scalar
const (c)

Disparity
in range
between ±1
power

1ix = − 1ix = + Range 1ix = − 1ix = + Range

0.100 0.002 0.900 1.111 0.100 0.002 0.900 1.111
0.300 0.059 0.700 1.300 0.300 0.059 0.700 1.300
0.500 0.333 0.500 1.500 0.500 0.333 0.500 1.500
0.700 1.345 0.300 1.700 0.700 1.345 0.300 1.700
0.900 7.674 0.100 1.900 0.900 7.674 0.100 1.900
0.990 97.499 0.010 1.990 0.990 97.499 0.010 1.990
1.000 ∞ 0.000 2.000 1.000 ∞ 0.000 2.000

5054

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 4, 2009 at 08:13 from IEEE Xplore. Restrictions apply.

() () ()()i i i ij ijx abs x b abs bβ = − − (15)

Inclusion of features internal to the input space, using
equation (14) or (15) instead of (13), requires specialising
the update equation (11) for the (RPU). Where internal
features are used the weight update for links should be
amended to (16).

 (). .ij i jw x eβ η∆ = (16)

An important point regarding the use of a power as a
strength controller for signal propagation is the operator
bias. Inverting the sign of a standard weight is essentially
the same as inverting the sign of the input. However, for
powers this is not the case as there is a disparity between
produced signal shapes and ranges for positive and
negative values of power. This disparity is illustrated
numerically in Table I, and the same information
graphically in Figure 1. The increasing non-linearity as c
approaches 1 while using negative powers is most clearly
evident in Figure 2; note that the output of the power based
signal control is linear for all tested values of c with unit
positive power, resulting in the normalised plots being co-
incident, however for negative unit power as c approaches
1 the dominance of system poles over zeros causes
increasing non-linearity. This disparity increases with the
magnitude of the controlling power.

To allow back propagation of the errors from the output
units to hidden units as described in (10) an estimated
error is formed based on the average error passed back
through the network. Similarly to forward propagation of
signals; the back propagation of errors uses the connecting
link’s signal propagation strength to scale the magnitude
and sign of the error passed to previous nodes. If a power
function is used to control strength of propagation then any
disparity in the shape and ranges between positive and
negative powers will adversely affect the calculated error
for preceding units. Biased or erroneous errors will tend to

have adverse affects upon training, potentially even
resulting in training being detrimental to performance. It is
worth noting that the adverse effect upon trainability of
previous units, which increases as c approaches 1,
appeared stronger for a preceding SU than RPU.

 It is postulated that the majority of optimal ANN
models of problems will contain multiple different forms of
data fusion; large fixed values of c should generally be
avoided for the sake of compatibility. The optimal value of
c will be problem dependant and ideally should be a node
or link level variable rather than network level.
Comparison between the PU and the RPU shows many
similarities. Both units are capable of generating multiple
positive powers of an arbitrary order, allowing production
of higher order correlates in a single stage, for the same
parameter order as a SU. The forms diverge on their zero
placement, the PU includes a zero in the input space by
default, which is detrimental to scalability and trainability
as signals cannot be entirely ignored. The RPU does not
place a zero internal to the input space by default and so
has better scaling properties for larger numbers of inputs.
The RPU can develop reciprocals and higher order
negative powers to encompass a commutative form of
division. The PU can model combinatorial affects of
interacting signs for bi-polar inputs, although in a very
limited way since the zero location is fixed. The PU has
associated training difficulties, which are minimised by the
RPU form. An implementation benefit of the basic RPU
form is its harmony with SU conventions providing the
ability to use standard SU based training techniques.

IV. HYBRID NEURAL NETWORK TOPOLOGIES

The traditional approach to network topology
development is the use of a single type of element in layer-
based structures where every element connects only to
elements in its preceding and subsequent layer. A natural

Fig. 1. Input Factors against Inputs for (c=[0.3,0.5,0.7,0.9], w=[-1,1])

Fig. 2. Normalised Input Factors against Inputs to illustrate increasing shape
disparity as c approaches 1. for (c=[0.3,0.5,0.7,0.9], w=[-1,1])

5055

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 4, 2009 at 08:13 from IEEE Xplore. Restrictions apply.

extension to this approach, when using multiple different
types of processing element, is to have layers being
composed of different types of elements. This leads to the
development of ‘sum of product’ and ‘product of sums’
network architectures. Since two types of processing
element are to be used, test will be performed for the four
possible permutations while maintaining homogeneity in
types for the layers. The four forms to be used are the
product of sums (SU:PU), sum of products (PU:SU),
product of products (PU:PU), and the standard sum of
sums (SU:SU). All network architectures are utilising a
single hidden layer. Additionally a flexible architecture
will be tested where the homogeneity of neural types per
layer constraint is removed.

V. EVOLUTIONARY BACK PROPAGATION ALGORITHM

The algorithm used for training is a simple Evolutionary
Algorithm (EA), combined with back propagation. The
purpose of the EA is twofold; firstly to allow optimisation
of the RPU cj variable, which is not trained through back-
propagation, and secondly as a more efficient means of
exploring multiple initial conditions. The EA is (9+9)-ES
+1elite with networks failing selection being re-initialised,
which ensures genetic diversity in order to prevent
stagnation. Each generation the population is filled to the
desired size (p=20) by generating networks with random
initial condition for their weights. The weight range used
for initial conditions was –1 to +1 for all weights except
the RPU cj variable, which was given a fixed range
between 0.05 and 0.8. The RPU units were implemented
using (12) and (14). Networks were then trained using
back propagation for a maximum of 50 epochs. If the
network performance degraded from its local optimum for
two epochs training was ceased for computational
efficiency and then the network was returned to its prior
optimum. To promote rapid convergence into the correct
region prior to fine-tuning a short annealing schedule was
used (17) where η(0)=0.2, t is the networks current epoch
and T = 4.

() ()0

1
t

t
T

η
η =

+
 (17)

Selection is performed using a binary tournament; the
winner of each tournament replicates itself with weight
mutations. The mutation rate used was 0.15. The best
network from each generation is immortalised passing
through to the next generation unmodified to continue its
annealing schedule. A maximum of 50 generations are
allowed for each problem.

VI. EXPERIMENTAL RESULTS

In this section the RPU defined by (12) and (14) will be
utilised in a variety of topologies to investigate its
representational and training properties. Four standard
classification problems taken from, [22], will be used to
allow comparison of representational performance for
binary classification against standard techniques.
Additionally a new modelling problem, involving
modelling the net torque acting on a physical system, is
introduced to help analyse performance in modelling
continuous outputs for a problem with a known solution.
All results are for ten repetitions of stratified ten fold cross
validation on the whole pattern set. Average classification
accuracy and the standard deviation are presented for both
the training folds and unseen testing folds allowing a
measurement of generalisation performance. The
classification benchmark C4.5 Tree-Construction
Algorithm [23] performance is included, where available,
along with the best performances found from other
classification literature.

A. Iris

The iris data set is a simple well-known non-linearly
separable data set; the problem is to correctly classify the
type of iris based upon petal and sepal dimensions. The set
has 4 continuous numerical inputs and 3 potential classes.
The results for each of the 4 homogenous layer topologies
are very similar, all of which outperformed C4.5 on cross
validation. The largest deviation from the norm is for the
PU:PU topology, which relies on multiplication to fuse all
inputs.

B. Diabetes

Similar performance is achieved by each of the 4 fixed
topology variants. Of which the best performance is

TABLE 2
IRIS TEN FOLD CROSS VALIDATION RESULTS

IRI (I4 O3) Train Test
Topology Class Std Class Std
3-SU:RPU 98.75 0.51 97.15 4.45
3-RPU:SU 98.74 0.51 97.09 4.45
3-RPU:RPU 98.85 0.52 96.36 4.81
3-SU:SU 98.72 0.51 97.33 4.33
C4.5 95.3 3.2
Best Lit 99.3 1.9

TABLE 3
DIABETES TEN FOLD CROSS VALIDATION RESULTS

DIA (I8 O1) Train Test
Topology Class Std Class Std
3SU:RPU 79.44 0.95 75.68 5.34
3-RPU:SU 78.18 1.02 75.69 4.45
3-RPU:RPU 78.80 1.11 76.06 4.64
3-SU:SU 79.81 0.98 75.10 4.89
2-SU:RPU2 78.77 0.95 76.50 4.83
1MX:MX* 78.46 0.71 76.90 4.48
C4.5 73/71.6
Best Lit 76.2 4.8

5056

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 4, 2009 at 08:13 from IEEE Xplore. Restrictions apply.

through the RPU:RPU architecture, which is not
significantly different to the best reported results, while the
worst performance is from the standard SU:SU form. All
topology variants outperform C4.5. Optimal free topology
performance (*) was achieved by using a single hidden
node in a dense network, where the output was given direct
connections to the inputs and the hidden node.

C. Balance Scale

The balance scale problem shows much more significant
deviations in the performance of the different topologies.
 The best performance is achieved by RPU:SU form,
achieving more than 99% generalisation accuracy, with
RPU:RPU having very similar performance. Both of these
forms outperform all other know performances on this
problem. The standard SU:SU form and the SU:PU form
have significantly worse performance and also have larger
standard deviation.

D. Torque

The problem is to calculate the resultant torque about a
fixed point with 2 opposing forces acting at different lever
lengths from the pivot. This is an interesting problem since
it is firstly a real physically embedded problem and also
because it has a known solution. The resultant torque for
an applied force (f) is the force multiplied by the lever
distance (d) measured perpendicular to the force. The
problem has 1000 patterns each with 4 uniformly random
real values. The single output is the net torque (τ).

1 1 2 2. .f d f dτ = − (18)

The best network performance, perhaps surprisingly
given the inherent sum of product structure of the problem,
is the RPU:RPU architecture with just over half the error of
the next best architecture.

E. Glass

The forensic analysis of glass problem was tackled almost
equally well by both the SU:RPU and SU:SU forms, which
both slightly outperform C4.5 on cross validation.

VII. DISCUSSION

Two different types of neural blocks have been utilised
to develop hybrid neural networks. Investigations in
topology have focussed on the four permutations with
homogenous node types in each layer and standard
adjacent layer based connectivity using a single hidden
layer. Equal network size was used for each topology
providing roughly equivalent description length. Each of
the four constrained topology permutations demonstrated
capacity to model the tested problems, despite network
sizes not being optimised specifically for each topology
variant. Some problems showed much greater sensitivity to
the data fusion strategies used with significant differences
in attained performance for equal network size. It seems
clear that no single topological permutation is universally
optimal, suggesting the need to automate the discovery of
the optimal data fusion strategy topology through
inheritance within the EA.

Initial investigations allowing a mixture of neuron types
within any layer showed increased expressivities, requiring
smaller network sizes to avoid over-fitting the training
data.

The significance of the data fusion strategy topology is
problem dependant and is related to the completeness with
which the example patterns describe the system. The fewer
the number of example patterns that are available for
training the greater the significance of the topology in
avoiding over-fitting the training data in order to improve
generalisation accuracy.

VIII. CONCLUSION

Firstly, It should also be noted that based on small
sample runs the single common internal absolute feature
did not seem to offer performance advantages for the tested
problems. The somewhat simpler form (13) could therefore
be substituted for (14) to leave the weight update equations
the same as for standard SU (11).

TABLE 5
TORQUE TEN FOLD CROSS VALIDATION RESULTS

TOR(I4:O1) Train Test

Topology Class Std Class Std

2SU:RPU 5.67E-3 8.62E-5 5.85E-3 7.45E-4
2RPU:SU 8.48E-3 5.38E-3 8.74E-3 6.00E-3
2RPU:RPU 3.39E-3 1.24E-3 3.52E-3 1.42E-3
2SU:SU 5.62E-3 8.41E-5 5.79E-3 7.65E-4

TABLE 4
BALANCE SCALE TEN FOLD CROSS VALIDATION RESULTS

BSC(I4:O3) Train Test

Topology Class Std Class Std

2-SU:RPU 91.67 0.36 91.77 3.20

2-RPU:SU 99.38 0.49 99.16 1.36

2-RPU:RPU 99.49 0.50 98.84 1.48

2-SU:SU 91.67 0.35 91.74 3.17

2MIX:MIX 99.45 0.44 98.91 1.40

Best Lit 91.4 1.3

TABLE 6
GLASS TEN FOLD CROSS VALIDATION RESULTS

GLA(I9:O6) Train Test

Topology Class Std Class Std

9SU:RPU 88.83 2.01 68.86 9.88
9RPU:SU 79.71 3.67 64.83 10.51
9RPU:RPU 81.13 3.52 66.03 10.72
9SU:SU 89.61 1.94 68.75 9.74
C4.5 68.5 10.4
Best Lit 71.5 1.9

5057

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 4, 2009 at 08:13 from IEEE Xplore. Restrictions apply.

For the majority of the problems the network
performances are quite close together regardless of the
topology that was used. However for some of the problems
more pronounced differences in performance were found.
The optimal set of neural elements and their topology are
problem dependant. Many problems can be approximated
to similar performance levels by a variety of different
architectures. However, some problems show significant
improvements in compactness of representation and in
generalisation performance through using a selection of
different types of neural elements. Problems most suited to
modelling with RPU are problems with large degrees of
direct and/or inverse proportionality of arbitrary order.
Systems that are amenable to description in terms of
interactions of poles and zeros are recommended for
modelling by RPUs.

IX. FURTHER WORK

This paper has focussed on modelling a number of real
world classification problems. However the most obviously
appropriate domains for the RPU are the accurate
modelling and generalisation of non-linear continuous
functions such as modelling of physical system transfer
functions or financial markets.

This work has focussed on the scaleable adaptable
modelling of systems towards the affects of poles and
zeros. Due to this and the inclusion of inverse
proportionality zero crossing has been omitted to avoid
generating infinities. It is thought desirable to
accommodate the description and crossing of both zeros
and poles in order to develop trainable transfer function
networks.

()() 0
1

() ()
m

p

j i
i

RPU net q z c x wβ
=

= − + +∏ (19)

 Further work will proceed to include zero crossing,
whilst ensuring that no input has a zero forced upon its
input space to avoid degrading scalability and trainability.
The expanded parameter form (19) will be explored
further. Note the power function used is the signed power
of the absolute of the variable to avoid creating local
minima. Investigation will proceed by varying the level of
the z, c, and p parameters from network constants, through
node level and down to individual link level. The resultant
modelling flexibility and trainability will then be
evaluated.

This work has concentrated solely on use of a single
hidden layer with standard layer based connectivity.
Further work will include topological evolution in order to
allow development of deeper sparse structures.

Further research should include Ensemble development
from networks composed of different neural components.

ACKNOWLEDGMENT

P. Elliott offers many thanks to D. Topiwala for his time
patience and understanding, and TRT UK for the resources
made available. Eternal thanks also to W. Browne for his
virtuous guidance throughout times of adversity.

REFERENCES

[1] Funahashi, A.K., On the approximate realization of continuous
mappings by neural networks. Neural Netw., 1989. 2: p. 183-192.

[2] K. Hornik, M.S., Multilayer feedforward networks are universal
approximators, in Artificial Neural Networks, H. White, Editor. 1989,
Blackwell: Oxford. p. 13-28.

[3] K. Hornik, M.S., H. White, Universal approximation of an unknown
mapping and its derivatives using multilayer feedforward networks.
Neural Netw., 1990. 3: p. 551-560.

[4] C. Koch, a.T.P., Multiplying with synapses and neurons, in Single
neuron computation. 1992, Academic Press Professional, Inc. p. 315-
345.

[5] C.L Giles, a.T.M., Learning, invariance, and generalization in high-
order neural networks. Applied Optics, 1987. 26: p. 4972-4978.

[6] N. J. Redding, A.K., and T Downs, Constructive Higher-Order
Network Algorithm that is Polynomial in Time. Neural Networks,
1993. 6: p. 997-1010.

[7] Y. Shin, a.J.G. The Pi-sigma Network : An Efficient Higher-Order
Neural Network for Pattern Classification and Function
Approximation. in Proceedings of IJCNN. 1991. Seattle.

[8] A Ismail, a.A.E. Global Optimization Algorithms for Training
Product Unit Neural Networks. in International joint conference on
neural networks ijcnn’2000. 2000. Como, Italy: IEEE.

[9] D.J. Janson, a.J.F.F., Training Product unit Neural Networks with
Genetic Algorithms, in IEEE Expert Magazine. 1993. p. 26-33.

[10] L.R. Leerink, C.L.G., B.G. Horne, and M.A. Jabri, Learning with
Product Units. Advances in Neural Information Processing Systems,
1995. 7: p. 537.

[11] R. Durbin, a.D.R., Product Units: A Computationally Powerfull and
Biologically Plausible Extension to Backpropagation Networks.
Neural Computation, 1989. 1: p. 133-142.

[12] C. Lin, K.W., J Wang. Scale Equalized Higher-order Neural
Networks. in Conference on Systems, Man and Cybernetics. 2005.
Waikoloa, Hawaii: IEEE.

[13] A. Hussain, J.J.S., T.S. Durbani, A New Neural Network for
Nonlinear Time-Series Modelling. Neurovest Journal, 1997: p. 16-26.

[14] Y. Shin, a.J.G. Approximation of Multivariate Functions Using Ridge
Polynomial Networks. in JCNN. 1992. Baltimore.

[15] Schmitt, M., On the complexity of computing and learning with
multiplicative neural networks. Neural Computation, 2002. 14(2): p.
241-301.

[16] J. Rissanen. (1978). Modeling by the shortest data description.
Automatica 14, 465-471

[17] J. Wang, K.W., F. Chang. Scale Equalisation Higher-order Neural
Networks. 2004: IEEE.

[18] B. Zhang, P.O., H. Muhlenbein, Evolutionary Induction of Sparse
Neural Trees. Evolutionary Computation, 1997. 5(2): p. 213-236.

[19] D. Li, K.H., J. Hu, and J. Murata, Training a kind of hybrid universal
learning networks withclassification problems. Neural Networks,
2002. 1: p. 703-708.

[20] A. Blumer, A.E., D. Haussler, and M. Warmuth, Learnability and the
vapnik-chervonenkis dimension. Journal of the association for
computer machinery, 1989. 36(4): p. 929-965.

[21] Reyneri, L.M., Weighted Radial Basis Functions for Improved
Pattern Recognition and Signal Processing. 1994, University of Pisa:
Pisa. p.6.

[22] Newman, D.J.H., S. & Blake, C.L. & Merz, C.J., UCI Repository of
machine learning databases. 1998, University of California, Irvine,
Dept. of Information and Computer Sciences.

[23] J.R Quinlan, C4.5: Programs for Machine Learning (Morgan
Kaufmnan, San mateo,, CA 1992

5058

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 4, 2009 at 08:13 from IEEE Xplore. Restrictions apply.

