
 
 

 

   
Abstract— Higher order networks allow modelling of 

correlates and geometrically invariant properties. Current 
techniques for their development either require domain 
knowledge, or are constrained by scaling properties or local 
minima. A novel reformulation of the product unit is 
introduced, motivated by a desire to improve scaling and 
training properties. The new unit allows developing high 
orders of positive and negative powers, and correlates in a 
single stage, but can be trained successfully using standard 
back propagation techniques. Tests on standard benchmarks 
in various hybrid topologies demonstrate the potential in a 
variety of problem domains.  

I. INTRODUCTION 

RTIFICIAL Neural Networks (ANN) are designed to 
emulate the storage and learning mechanisms within 

biological brains. The standard ANN model is based upon 
summation, calculating the net input as the weighted sum 
of the inputs. Multi-layer Summation Unit Neural 
Networks (SUNN) have been found capable of representing 
any continuous function to an arbitrary degree of accuracy, 
provided there are sufficient number of hidden units [1-3]. 
However, biological evidence shows the capability of the 
animal nervous system to perform multiplication [4] as 
well as addition.  

Multiplication in ANN allows for the development of 
correlation information and higher order terms providing 
increased capacity and the ability to learn geometrically 
invariant properties [5]. Appropriate domain knowledge 
enables these terms to be pre-calculated and included as 
additional inputs to a SUNN. Without this knowledge, all 
permutations of inputs and powers must be included, 
which results in a combinatorial explosion for large 
numbers of inputs. It has been shown that for logical 
problems at least, generally only a minority of variables 
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require higher order terms [6]. Therefore, except for low 
dimensional problems, or where domain knowledge is 
available, it is considered most efficient to develop the 
necessary higher orders internally during training [7-12].  

An alternative form is the pi-sigma NN [7], which takes 
into account the requirement for developing only a 
minority of higher order terms. A pi-sigma network 
consisting of K summing units feeding a single output 
product unit can produce a Kth order approximation of a 
continuous function.  Some other architectures which 
allow development of higher orders and/or correlates 
include the functional link NN [13], ridge polynomial NN 
[14], and Product Units (PU) [11].  

Out of which Product Units are the most efficient for 
developing higher orders, however the standard method of 
training NN, Gradient Descent (GD), which has proved 
successful in training SUNN tends to become stuck in local 
optima when training PUNN. The reason for this is the PU 
increase the complexity of the state space, introducing 
more local minima [8, 10, 15].   

The focus of this paper is the development of a re-
formulation of the product unit. The aim is to allow 
development of arbitrary orders of power, both positive and 
negative, within a single unit, facilitating description of 
system poles and zeros. A further aim is to harmonise this 
novel Reformulated Product Unit (RPU) for operation with 
the Summation Unit (SU) while minimising complexities 
introduced into the state space, and hence improve 
trainability. The RPU when instantiated in its minimal 
form will use the same parameter order, back propagation 
and weight update equations as a SU. These equivalences 
simplify the implementation of hybrid networks. Units are 
easily interchangeable allowing development of arbitrary 
topologies. The optimal topology to approximate a given 
function is postulated to utilise multiple forms of data 
fusion to produce a single output from the many input 
variables. Or simply stated, a function can be more 
accurately and compactly modelled if the relationships 
between the variables can be succinctly emulated, which 
requires a variety of neural tools to be available. 

Using multiple neural blocks in order to further 
minimise the number of parameters in a model is 
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commensurate the principle of Minimum Decription 
Length (MDL). Jorma Rissanen introduced the principle of 
MDL [16], which embodies Ocam’s Razor. The 
fundamental concept is that any regularities within the 
data may be used to compress its form facilitating more 
compact descriptions, requiring fewer symbols, which 
tends to optimise average generalisation performance on 
unseen data. 

The following sections of this paper will provide 
background on previous forms of multiplicative data 
fusion. Associated training difficulties are discussed along 
with potential means to minimise local minima for the 
standard PU. A new form of product unit is then 
introduced to address important issues and tested on 
benchmark problem data sets. 

II. MULTIPLICATIVE DATA FUSION IN NEURAL NETWORKS 

The standard Summation Unit (SU) fuses multiple input 
signals to form a single net input signal using a weighted 
sum of the inputs plus a bias, (1), where oj is the output of 
unit j, and wij, is an adjustable parameter between node i 
from a preceding layer and node j, and xi represents the 
output value of node i. The final output of the node is then 
the net input passed through an activation function (2). 
Typically a sigmoid, such as the tan-sigmoid (3), is used 
but cosine, gaussian or any other smooth differentiable 
function may be used with back propagation. There are two 
primary functions performed by the sigmoid: firstly, to act 
as a squashing function to ensure that signals stay within 
controllable limits, since large-scale differences in signals 
tend to be detrimental to learning [12, 17]. Secondly, the 
activation function acts as an optional source of non-
linearity that may be used where the linear net input is 
incapable of modelling the required functional 
relationships. The standard sigmoid activation function is 
linear around the unit’s centre but increasingly non-linear 
towards the extremes. 
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Driven by biological evidence of multiplicative 
processing in the nervous system, and by a pure 
engineering and mathematical desire to diversify the range 
of functions that can be represented and learned by Neural 
Networks, multiplicative data fusion has been utilised in 
NN in a variety of different forms. The most established 
form of multiplicative synapse is Higher Order Neuron 

(HON). The equation that defines a HON with output o, 
and inputs xa, xb, xc … is defined in (4) 
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 The higher-order correlations contained allow the 
learning of geometrically invariant properties, and also 
allows the pre-calculation of the higher-order correlations 
as additional inputs so that a SUNN can be trained in the 
normal way for fast learning of low dimensional problems. 
However, due to the exponential scaling property of this 
formulation, it is limited to low orders of power and low 
dimensional problems. 

 Sigma-Pi architectures, so named due to their form 
that computes the sum of products, alleviate this scaling 
problem somewhat, however development of high orders is 
still very computationally expensive. The sigma unit uses 
the standard weighted sum as in (1), to compute the net 
input, which is then passed through an activation function 
σ , (2). The pi unit (PIU) calculates the net input as the 
product of weighted inputs (5).  

    ( )
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 The PIU as defined in (5), [18, 19], is not a scaleable 
or controllable form with which to develop higher orders 
or correlates. The model can be factorised retaining 
identical in functionality to give (6), where a single 
common factor wj represents the combined effect of the wij. 
Therefore, inputs cannot be individually controlled to 
increase or discount their effects.   

( )
1

( ) .
m

j j i
i

PIU net w x
=

= ∏      (6) 

 Pi-sigma architectures [7] compute the product of sums 
rather than sum of products. The parameter order is 
reduced for this architecture by removing the adaptable 
weights connecting the sigma unit’s outputs to the pi units. 
Pi-sigma networks reduce the scaling problems with the 
number of inputs present in sigma-pi networks. However 
to generate a cubic term, three summation units are 
required to act solely as through paths from the inputs to 
the outputs, with all other SU links being redundant. Pi-
sigma networks are considered to be efficient for non-
linear pattern classification and function approximation. 

 All of the above forms are limited in the maximum 
order that they can generate for a single variable. The 
majority, with exception of pi-sigma networks can only 
develop first order powers or correlates in a single layer, 
and the maximum order of pi-sigma is limited by the 
available number of sigma units, with increasing 
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parameter redundancy in the sigma units for development 
of higher orders.  

Another form of multiplicative based data fusion, the 
Product Unit (PU) uses a power function to control the 
strength of propagation for each link rather than a linear 
scaling weight. The advantage of this formulation (7) is 
that it allows the development of arbitrary order of power 
for any input within a single unit. Correlates between the 
inputs raised to their separate powers can also be produced. 
Product Unit Neural Networks (PUNN) where developed 
by Durbin and Rumelhart [11], and have been further 
investigated by others including [8, 9, 15].   

( )
1

( ) ij

m
w

j i
i

PU net x
=

= ∏        (7) 

  An additional advantage of product units is their 
increased information capacity of 3N relative to the SU 
capacity of 2N for N inputs, for binary logic problems at 
least [11] .It is worth noting that for Boolean inputs the PU 
has been shown to be approximated by a SU with a cosine 
activation function (8). 
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 This equivalence simplifies the implementation of the 
PU for binary inputs. Stemming from this form, 
approximating the PU as a SU with a cosine activation 
function, is the suggestion that the Vapnik-Chervonenkis 
(VC) dimension is practically infinite, for binary inputs at 
least [15, 20]. The VC dimension directly relates partly to 
the versatility but also to the generalisation properties. A 
large VC dimension implies that generalisation may not be 
guaranteed; although it is not clear to what extent this 
comparison extends to a real non-binary implementation. 

PU are powerful in their representative abilities, but also 
tend to be more difficult to train than SU. The reason for 
this is that the PU introduces increased amounts of local 
minima into the state space along with deep ravines and 
valleys that tend to trap the solution [8-10, 15]. An 
important cause of local minima introduction is due to the 
power function being used to control the strength with 
which signals are propagated. In (7) if the base argument 
xi of the power is zero then the contribution for the input 
must be either zero or infinity for negative and non-
negative powers respectively, not the desired unit identity. 
More simply stated, even with a controlling power of zero 
an input cannot be ignored if xi touches or crosses zero. An 
integral aspect of scaleable learning is the ability to 
completely discount any inputs unrelated to the target 
output. Use of either standard form of input (xi) 
representation, uni-polar [0..1] or bi-polar [-1..1] will 

result in the introduction of artefacts. 
The use of bi-polar inputs with the standard PU equation 

(7) will result in further local minima due to the inclusion 
of sign affects within the controlling power operator. The 
power function preserves input sign information for 
negative powers, but for positive powers sign information 
is removed. This can make a purely local search for global 
solutions almost impossible; consider modelling z3 as in 
[8]. Training from small random initial conditions, as is 
normal with SUNN, will increase the controlling weight 
towards unit power. However, due to the incorporation of 
sign in the power, training will not surmount the large 
error introduced where the sign information is lost at the 
power of two in order to reach the cubed power where sign 
information is restored. The same problem would arise in 
attempting to learn the problem with power initial 
condition greater than four. An alternative suggestion to 
reduce local minima is to use a signed power, where sign 
information is maintained regardless of the controlling 
power. 

In summary, the requirements for an adaptable learning 
element to generate higher order correlates are scalability, 
trainability and inclusion of the combining operator’s 
identity for each input. Scaling to accommodate large 
numbers of inputs requires the ability to ignore or only 
partially consider signals, many of which may be unrelated 
to the output. This feature is notably lacking from (5). The 
PU (7) allows partially discounting inputs, but with the 
production of artefacts being detrimental to trainability and 
accuracy in representing continuous functions. Trainability 
is increasingly important with network size to make 
problems analytically tractable. Evolutionary algorithms 
tend to produce reasonable solutions quickly, but often take 
much longer to tune; making gradient descent a desirable 
feature for a practical solution. If zeros and zero crossing 
are to be utilised it is imperative that the location of the 
zero point on the input space is adaptable to allow 
discounting signals. 

III. REFORMULATED PRODUCT UNIT (RPU) 

What is desired is a means of adaptively learning to 
develop the required higher order terms to model a given 
function for minimal cost. Since only a few higher order 
terms are generally required to solve a problem it is 
desirable to allow generation of arbitrary powers in a 
single stage to minimise the parameter cost. The product 
unit introduced by Durbin and Rumelhart, [11], allows 
this. However, in order to minimise the introduction of 
minima into the state space by the inclusion of higher 
order variables, and improve trainability, the product unit 
will be reformulated. A second priority in this 
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reformulation is to harmonise the product unit with the 
standard summation unit to allow back propagating hybrid 
networks. Another factor to consider is that if multiple 
different types of neurons are to operate simultaneously in 
a network, then there is an additional performance cost in 
determining and utilising the corresponding specialised 
error and weight update formulae. Ideally the same 
equations would be effective for each node type.  

The standard SU conventions assumed here are: 
netj is the net input for node j which has a total of n 

units in its layer. Unit i is in the preceding layer to unit j 
and has a total of m units in its layer. The input for unit i is 
denoted by xi and has range [-1 …1], wij represents an 
adjustable signal propagation strength parameter between 
unit i and unit j. The error for unit j is ej, where for output 
nodes equation (9) is used and for hidden nodes, where 
target information is not present, the errors are back 
propagated according to the strengths of the connecting 
link parameters wij using (10). The equation controlling 
weight adaptation is given by (11), where the learning rate 
is a network parameter controlling step size. 

( ) ( )' .j j j j je net t oσ= −        (9) 
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 To allow the use of the standard SU back propagation 
equations it is essential to align the identities and 
orientation of all of the operators. The binary combining 
function used is a product so requires unity identity for 
discounting of signals. The base argument in the power 
function also has unity identity and the exponent argument 
acts as the controllable strength of signal propagation. The 
standard power function is undefined for negative inputs so 
the base of the power must remain positive, otherwise a 
complex power or signed power must be used. Where a 
signed power would have the advantage of reduced 
numbers of local minima. 
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The summation-based identity at zero on the input space 
can then be mapped to unity identity for the base argument 
in the power function as in (12). The simplest form of (12) 
would be to use a global constant scaling parameter c, 
where (c<1) to ensure that the base of the power remains 
positive with β(xi) as the raw input (13). This helps avoid 
exceptions by “softening” the zero effect, preserving 
accountability by avoiding saturation, and also allows 
smooth discounting of signals which is important for 
scalability with large numbers of inputs,  

( )i i ix xβ =          (13) 

This format maintains the integrity of all the standard 
SU formulae with only the net input equation specialised. 
Finally, after the links input factors have been multiplied 
together, to reconcile the differences in the operators’ 
identities and convert back to standard summation based 
form, a unit bias is removed. For minimal extra cost the 
scaling parameter c can be individual to each node, to 
allow increased flexibility.  

A descriptive aspect that has been removed from the 
original PU during its reformation is the ability to develop 
‘V’ or ‘U’ shapes from bi-polar inputs; bi-polar inputs 
with even power will form a ‘U’ shape centred at zero. An 
extension of the RPU form is to allow development of such 
local features in a manner similar to radial basis functions, 
[20]. Equation (12), used with (14), allows description of 
local features internal to the input space, for example the 
absolute distances from a feature centre. The minimum 
additional cost to describe such features within this 
formulation is a single additional parameter per node to 
describe a single common feature centre in input space 
(14). However, where multiple internal features are 
anticipated significantly increased expressive capabilities 
can be achieved through using a feature centre parameter 
per link (15).  

( ) ( ) ( )( )i i i j jx abs x b abs bβ = − −    (14) 

TABLE I 
DISPARITY IN SIGNAL SHAPES AND RANGES BETWEEN POSITIVE AND NEGATIVE CONTROLLING POWERS 

Unit Positive Power Unit Negative Power Scalar 
const (c) 

Disparity 
in range 
between ±1 
power 

1ix = −  1ix = +  Range 1ix = −  1ix = +  Range 

0.100 0.002 0.900 1.111 0.100 0.002 0.900 1.111 
0.300 0.059 0.700 1.300 0.300 0.059 0.700 1.300 
0.500 0.333 0.500 1.500 0.500 0.333 0.500 1.500 
0.700 1.345 0.300 1.700 0.700 1.345 0.300 1.700 
0.900 7.674 0.100 1.900 0.900 7.674 0.100 1.900 
0.990 97.499 0.010 1.990 0.990 97.499 0.010 1.990 
1.000 ∞  0.000 2.000 1.000 ∞  0.000 2.000 
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( ) ( ) ( )( )i i i ij ijx abs x b abs bβ = − −    (15) 

Inclusion of features internal to the input space, using 
equation (14) or (15) instead of (13), requires specialising 
the update equation (11) for the (RPU). Where internal 
features are used the weight update for links should be 
amended to (16). 

 ( ). .ij i jw x eβ η∆ =       (16) 

An important point regarding the use of a power as a 
strength controller for signal propagation is the operator 
bias. Inverting the sign of a standard weight is essentially 
the same as inverting the sign of the input. However, for 
powers this is not the case as there is a disparity between 
produced signal shapes and ranges for positive and 
negative values of power. This disparity is illustrated 
numerically in Table I, and the same information 
graphically in Figure 1. The increasing non-linearity as c 
approaches 1 while using negative powers is most clearly 
evident in Figure 2; note that the output of the power based 
signal control is linear for all tested values of c with unit 
positive power, resulting in the normalised plots being co-
incident, however for negative unit power as c approaches 
1 the dominance of system poles over zeros causes 
increasing non-linearity. This disparity increases with the 
magnitude of the controlling power. 

To allow back propagation of the errors from the output 
units to hidden units as described in (10) an estimated 
error is formed based on the average error passed back 
through the network. Similarly to forward propagation of 
signals; the back propagation of errors uses the connecting 
link’s signal propagation strength to scale the magnitude 
and sign of the error passed to previous nodes. If a power 
function is used to control strength of propagation then any 
disparity in the shape and ranges between positive and 
negative powers will adversely affect the calculated error 
for preceding units. Biased or erroneous errors will tend to 

have adverse affects upon training, potentially even 
resulting in training being detrimental to performance. It is 
worth noting that the adverse effect upon trainability of 
previous units, which increases as c approaches 1, 
appeared stronger for a preceding SU than RPU.  

 It is postulated that the majority of optimal ANN 
models of problems will contain multiple different forms of 
data fusion; large fixed values of c should generally be 
avoided for the sake of compatibility. The optimal value of 
c will be problem dependant and ideally should be a node 
or link level variable rather than network level.  
Comparison between the PU and the RPU shows many 
similarities. Both units are capable of generating multiple 
positive powers of an arbitrary order, allowing production 
of higher order correlates in a single stage, for the same 
parameter order as a SU. The forms diverge on their zero 
placement, the PU includes a zero in the input space by 
default, which is detrimental to scalability and trainability 
as signals cannot be entirely ignored. The RPU does not 
place a zero internal to the input space by default and so 
has better scaling properties for larger numbers of inputs. 
The RPU can develop reciprocals and higher order 
negative powers to encompass a commutative form of 
division. The PU can model combinatorial affects of 
interacting signs for bi-polar inputs, although in a very 
limited way since the zero location is fixed. The PU has 
associated training difficulties, which are minimised by the 
RPU form. An implementation benefit of the basic RPU 
form is its harmony with SU conventions providing the 
ability to use standard SU based training techniques.  

IV. HYBRID NEURAL NETWORK TOPOLOGIES 

The traditional approach to network topology 
development is the use of a single type of element in layer-
based structures where every element connects only to 
elements in its preceding and subsequent layer. A natural 

 
Fig. 1.  Input Factors against Inputs for (c=[0.3,0.5,0.7,0.9], w=[-1,1]) 

Fig. 2.  Normalised Input Factors against Inputs to illustrate increasing shape 
disparity as c approaches 1. for (c=[0.3,0.5,0.7,0.9], w=[-1,1]) 
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extension to this approach, when using multiple different 
types of processing element, is to have layers being 
composed of different types of elements. This leads to the 
development of ‘sum of product’ and ‘product of sums’ 
network architectures. Since two types of processing 
element are to be used, test will be performed for the four 
possible permutations while maintaining homogeneity in 
types for the layers. The four forms to be used are the 
product of sums (SU:PU), sum of products (PU:SU), 
product of products (PU:PU), and the standard sum of 
sums (SU:SU). All network architectures are utilising a 
single hidden layer. Additionally a flexible architecture 
will be tested where the homogeneity of neural types per 
layer constraint is removed.  

V. EVOLUTIONARY BACK PROPAGATION ALGORITHM 

The algorithm used for training is a simple Evolutionary 
Algorithm (EA), combined with back propagation. The 
purpose of the EA is twofold; firstly to allow optimisation 
of the RPU cj variable, which is not trained through back-
propagation, and secondly as a more efficient means of 
exploring multiple initial conditions. The EA is (9+9)-ES 
+1elite with networks failing selection being re-initialised, 
which ensures genetic diversity in order to prevent 
stagnation. Each generation the population is filled to the 
desired size (p=20) by generating networks with random 
initial condition for their weights. The weight range used 
for initial conditions was –1 to +1 for all weights except 
the RPU cj variable, which was given a fixed range 
between 0.05 and 0.8. The RPU units were implemented 
using (12) and (14). Networks were then trained using 
back propagation for a maximum of 50 epochs. If the 
network performance degraded from its local optimum for 
two epochs training was ceased for computational 
efficiency and then the network was returned to its prior 
optimum. To promote rapid convergence into the correct 
region prior to fine-tuning a short annealing schedule was 
used (17) where η(0)=0.2, t is the networks current epoch 
and T = 4. 

( ) ( )0

1
t

t
T

η
η =

+
         (17) 

Selection is performed using a binary tournament; the 
winner of each tournament replicates itself with weight 
mutations. The mutation rate used was 0.15. The best 
network from each generation is immortalised passing 
through to the next generation unmodified to continue its 
annealing schedule. A maximum of 50 generations are 
allowed for each problem.  

VI. EXPERIMENTAL RESULTS 

In this section the RPU defined by (12) and (14) will be 
utilised in a variety of topologies to investigate its 
representational and training properties. Four standard 
classification problems taken from, [22], will be used to 
allow comparison of representational performance for 
binary classification against standard techniques. 
Additionally a new modelling problem, involving 
modelling the net torque acting on a physical system, is 
introduced to help analyse performance in modelling 
continuous outputs for a problem with a known solution. 
All results are for ten repetitions of stratified ten fold cross 
validation on the whole pattern set. Average classification 
accuracy and the standard deviation are presented for both 
the training folds and unseen testing folds allowing a 
measurement of generalisation performance. The 
classification benchmark C4.5 Tree-Construction 
Algorithm [23] performance is included, where available, 
along with the best performances found from other 
classification literature.  

A. Iris 

The iris data set is a simple well-known non-linearly 
separable data set; the problem is to correctly classify the 
type of iris based upon petal and sepal dimensions. The set 
has 4 continuous numerical inputs and 3 potential classes. 
The results for each of the 4 homogenous layer topologies 
are very similar, all of which outperformed C4.5 on cross 
validation. The largest deviation from the norm is for the 
PU:PU topology, which relies on multiplication to fuse all 
inputs.  

B. Diabetes 

Similar performance is achieved by each of the 4 fixed 
topology variants. Of which the best performance is 

TABLE 2 
IRIS TEN FOLD CROSS VALIDATION RESULTS 

IRI  (I4 O3) Train Test 
Topology Class Std Class Std 
3-SU:RPU 98.75 0.51 97.15 4.45 
3-RPU:SU 98.74 0.51 97.09 4.45 
3-RPU:RPU 98.85 0.52 96.36 4.81 
3-SU:SU 98.72 0.51 97.33 4.33 
C4.5   95.3 3.2 
Best Lit   99.3 1.9 

TABLE 3 
DIABETES TEN FOLD CROSS VALIDATION RESULTS 

DIA (I8 O1) Train Test 
Topology Class Std Class Std 
3SU:RPU 79.44 0.95 75.68 5.34 
3-RPU:SU 78.18 1.02 75.69 4.45 
3-RPU:RPU 78.80 1.11 76.06 4.64 
3-SU:SU 79.81 0.98 75.10 4.89 
2-SU:RPU2 78.77 0.95 76.50 4.83 
1MX:MX* 78.46 0.71 76.90 4.48 
C4.5   73/71.6  
Best Lit   76.2 4.8 
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through the RPU:RPU architecture, which is not 
significantly different to the best reported results, while the 
worst performance is from the standard SU:SU form. All 
topology variants outperform C4.5. Optimal free topology 
performance (*) was achieved by using a single hidden 
node in a dense network, where the output was given direct 
connections to the inputs and the hidden node.  

C. Balance Scale 

The balance scale problem shows much more significant 
deviations in the performance of the different topologies. 
 The best performance is achieved by RPU:SU form, 
achieving more than 99% generalisation accuracy,  with 
RPU:RPU having very similar performance. Both of these 
forms outperform all other know performances on this 
problem. The standard SU:SU form and the SU:PU form 
have significantly worse performance and also have larger 
standard deviation. 

D. Torque  

The problem is to calculate the resultant torque about a 
fixed point with 2 opposing forces acting at different lever 
lengths from the pivot. This is an interesting problem since 
it is firstly a real physically embedded problem and also 
because it has a known solution. The resultant torque for 
an applied force (f) is the force multiplied by the lever 
distance (d) measured perpendicular to the force. The 
problem has 1000 patterns each with 4 uniformly random 
real values. The single output is the net torque (τ). 

1 1 2 2. .f d f dτ = −        (18) 

The best network performance, perhaps surprisingly 
given the inherent sum of product structure of the problem, 
is the RPU:RPU architecture with just over half the error of 
the next best architecture. 

E. Glass 

The forensic analysis of glass problem was tackled almost 
equally well by both the SU:RPU and SU:SU forms, which 
both slightly outperform C4.5 on cross validation. 

VII. DISCUSSION 

Two different types of neural blocks have been utilised 
to develop hybrid neural networks. Investigations in 
topology have focussed on the four permutations with 
homogenous node types in each layer and standard 
adjacent layer based connectivity using a single hidden 
layer. Equal network size was used for each topology 
providing roughly equivalent description length. Each of 
the four constrained topology permutations demonstrated 
capacity to model the tested problems, despite network 
sizes not being optimised specifically for each topology 
variant. Some problems showed much greater sensitivity to 
the data fusion strategies used with significant differences 
in attained performance for equal network size. It seems 
clear that no single topological permutation is universally 
optimal, suggesting the need to automate the discovery of 
the optimal data fusion strategy topology through 
inheritance within the EA.  

Initial investigations allowing a mixture of neuron types 
within any layer showed increased expressivities, requiring 
smaller network sizes to avoid over-fitting the training 
data. 

The significance of the data fusion strategy topology is 
problem dependant and is related to the completeness with 
which the example patterns describe the system. The fewer 
the number of example patterns that are available for 
training the greater the significance of the topology in 
avoiding over-fitting the training data in order to improve 
generalisation accuracy. 

VIII. CONCLUSION 

Firstly, It should also be noted that based on small 
sample runs the single common internal absolute feature 
did not seem to offer performance advantages for the tested 
problems. The somewhat simpler form (13) could therefore 
be substituted for (14) to leave the weight update equations 
the same as for standard SU (11).  

TABLE 5 
TORQUE TEN FOLD CROSS VALIDATION RESULTS 

TOR(I4:O1) Train Test 

Topology Class Std Class Std 

2SU:RPU 5.67E-3 8.62E-5 5.85E-3 7.45E-4 
2RPU:SU 8.48E-3 5.38E-3 8.74E-3 6.00E-3 
2RPU:RPU 3.39E-3 1.24E-3 3.52E-3 1.42E-3 
2SU:SU 5.62E-3 8.41E-5 5.79E-3 7.65E-4 

TABLE 4 
BALANCE  SCALE  TEN FOLD CROSS VALIDATION RESULTS 

BSC(I4:O3) Train Test 

Topology Class Std Class Std 

2-SU:RPU 91.67 0.36 91.77 3.20 

2-RPU:SU 99.38 0.49 99.16 1.36 

2-RPU:RPU 99.49 0.50 98.84 1.48 

2-SU:SU 91.67 0.35 91.74 3.17 

2MIX:MIX 99.45 0.44 98.91 1.40 

Best Lit   91.4 1.3 

TABLE 6 
GLASS TEN FOLD CROSS VALIDATION RESULTS 

GLA(I9:O6) Train Test 

Topology Class Std Class Std 

9SU:RPU 88.83 2.01 68.86 9.88 
9RPU:SU 79.71 3.67 64.83 10.51 
9RPU:RPU 81.13 3.52 66.03 10.72 
9SU:SU 89.61 1.94 68.75 9.74 
C4.5   68.5 10.4 
Best Lit   71.5 1.9 
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For the majority of the problems the network 
performances are quite close together regardless of the 
topology that was used. However for some of the problems 
more pronounced differences in performance were found. 
The optimal set of neural elements and their topology are 
problem dependant. Many problems can be approximated 
to similar performance levels by a variety of different 
architectures. However, some problems show significant 
improvements in compactness of representation and in 
generalisation performance through using a selection of 
different types of neural elements. Problems most suited to 
modelling with RPU are problems with large degrees of 
direct and/or inverse proportionality of arbitrary order. 
Systems that are amenable to description in terms of 
interactions of poles and zeros are recommended for 
modelling by RPUs.  

IX. FURTHER WORK 

This paper has focussed on modelling a number of real 
world classification problems. However the most obviously 
appropriate domains for the RPU are the accurate 
modelling and generalisation of non-linear continuous 
functions such as modelling of physical system transfer 
functions or financial markets.  

This work has focussed on the scaleable adaptable 
modelling of systems towards the affects of poles and 
zeros. Due to this and the inclusion of inverse 
proportionality zero crossing has been omitted to avoid 
generating infinities. It is thought desirable to 
accommodate the description and crossing of both zeros 
and poles in order to develop trainable transfer function 
networks. 

( )( ) 0
1

( ) ( )
m

p

j i
i

RPU net q z c x wβ
=

= − + +∏   (19) 

 Further work will proceed to include zero crossing, 
whilst ensuring that no input has a zero forced upon its 
input space to avoid degrading scalability and trainability. 
The expanded parameter form (19) will be explored 
further. Note the power function used is the signed power 
of the absolute of the variable to avoid creating local 
minima. Investigation will proceed by varying the level of 
the z, c, and p parameters from network constants, through 
node level and down to individual link level. The resultant 
modelling flexibility and trainability will then be 
evaluated. 

This work has concentrated solely on use of a single 
hidden layer with standard layer based connectivity. 
Further work will include topological evolution in order to 
allow development of deeper sparse structures. 

Further research should include Ensemble development 
from networks composed of different neural components.  
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